This paper presents a comprehensive survey of low-light image and video enhancement. We begin with the challenging mixed over-/under-exposed images, which are under-performed by existing methods. To this end, we propose two variants of the SICE dataset named SICE_Grad and SICE_Mix. Next, we introduce Night Wenzhou, a large-scale, high-resolution video dataset, to address the issue of the lack of a low-light video dataset that discount the use of low-light image enhancement (LLIE) to videos. The Night Wenzhou dataset is challenging since it consists of fast-moving aerial scenes and streetscapes with varying illuminations and degradation. We conduct extensive key technique analysis and experimental comparisons for representative LLIE approaches using these newly proposed datasets and the current benchmark datasets. Finally, we address unresolved issues and propose future research topics for the LLIE community.
translated by 谷歌翻译
Unsupervised pre-training on millions of digital-born or scanned documents has shown promising advances in visual document understanding~(VDU). While various vision-language pre-training objectives are studied in existing solutions, the document textline, as an intrinsic granularity in VDU, has seldom been explored so far. A document textline usually contains words that are spatially and semantically correlated, which can be easily obtained from OCR engines. In this paper, we propose Wukong-Reader, trained with new pre-training objectives to leverage the structural knowledge nested in document textlines. We introduce textline-region contrastive learning to achieve fine-grained alignment between the visual regions and texts of document textlines. Furthermore, masked region modeling and textline-grid matching are also designed to enhance the visual and layout representations of textlines. Experiments show that our Wukong-Reader has superior performance on various VDU tasks such as information extraction. The fine-grained alignment over textlines also empowers Wukong-Reader with promising localization ability.
translated by 谷歌翻译
Deep learning has revolutionized human society, yet the black-box nature of deep neural networks hinders further application to reliability-demanded industries. In the attempt to unpack them, many works observe or impact internal variables to improve the model's comprehensibility and transparency. However, existing methods rely on intuitive assumptions and lack mathematical guarantees. To bridge this gap, we introduce Bort, an optimizer for improving model explainability with boundedness and orthogonality constraints on model parameters, derived from the sufficient conditions of model comprehensibility and transparency. We perform reconstruction and backtracking on the model representations optimized by Bort and observe an evident improvement in model explainability. Based on Bort, we are able to synthesize explainable adversarial samples without additional parameters and training. Surprisingly, we find Bort constantly improves the classification accuracy of various architectures including ResNet and DeiT on MNIST, CIFAR-10, and ImageNet.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Structure-guided image completion aims to inpaint a local region of an image according to an input guidance map from users. While such a task enables many practical applications for interactive editing, existing methods often struggle to hallucinate realistic object instances in complex natural scenes. Such a limitation is partially due to the lack of semantic-level constraints inside the hole region as well as the lack of a mechanism to enforce realistic object generation. In this work, we propose a learning paradigm that consists of semantic discriminators and object-level discriminators for improving the generation of complex semantics and objects. Specifically, the semantic discriminators leverage pretrained visual features to improve the realism of the generated visual concepts. Moreover, the object-level discriminators take aligned instances as inputs to enforce the realism of individual objects. Our proposed scheme significantly improves the generation quality and achieves state-of-the-art results on various tasks, including segmentation-guided completion, edge-guided manipulation and panoptically-guided manipulation on Places2 datasets. Furthermore, our trained model is flexible and can support multiple editing use cases, such as object insertion, replacement, removal and standard inpainting. In particular, our trained model combined with a novel automatic image completion pipeline achieves state-of-the-art results on the standard inpainting task.
translated by 谷歌翻译
Earthquakes have a deep impact on wide areas, and emergency rescue operations may benefit from social media information about the scope and extent of the disaster. Therefore, this work presents a text miningbased approach to collect and analyze social media data for early earthquake impact analysis. First, disasterrelated microblogs are collected from the Sina microblog based on crawler technology. Then, after data cleaning a series of analyses are conducted including (1) the hot words analysis, (2) the trend of the number of microblogs, (3) the trend of public opinion sentiment, and (4) a keyword and rule-based text classification for earthquake impact analysis. Finally, two recent earthquakes with the same magnitude and focal depth in China are analyzed to compare their impacts. The results show that the public opinion trend analysis and the trend of public opinion sentiment can estimate the earthquake's social impact at an early stage, which will be helpful to decision-making and rescue management.
translated by 谷歌翻译
Automated rule checking (ARC), which is expected to promote the efficiency of the compliance checking process in the architecture, engineering, and construction (AEC) industry, is gaining increasing attention. Throwing light on the ARC application hotspots and forecasting its trends are useful to the related research and drive innovations. Therefore, this study takes the patents from the database of the Derwent Innovations Index database (DII) and China national knowledge infrastructure (CNKI) as data sources and then carried out a three-step analysis including (1) quantitative characteristics (i.e., annual distribution analysis) of patents, (2) identification of ARC topics using a latent Dirichlet allocation (LDA) and, (3) SNA-based co-occurrence analysis of ARC topics. The results show that the research hotspots and trends of Chinese and English patents are different. The contributions of this study have three aspects: (1) an approach to a comprehensive analysis of patents by integrating multiple text mining methods (i.e., SNA and LDA) is introduced ; (2) the application hotspots and development trends of ARC are reviewed based on patent analysis; and (3) a signpost for technological development and innovation of ARC is provided.
translated by 谷歌翻译
Video super-resolution is one of the most popular tasks on mobile devices, being widely used for an automatic improvement of low-bitrate and low-resolution video streams. While numerous solutions have been proposed for this problem, they are usually quite computationally demanding, demonstrating low FPS rates and power efficiency on mobile devices. In this Mobile AI challenge, we address this problem and propose the participants to design an end-to-end real-time video super-resolution solution for mobile NPUs optimized for low energy consumption. The participants were provided with the REDS training dataset containing video sequences for a 4X video upscaling task. The runtime and power efficiency of all models was evaluated on the powerful MediaTek Dimensity 9000 platform with a dedicated AI processing unit capable of accelerating floating-point and quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 500 FPS rate and 0.2 [Watt / 30 FPS] power consumption. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Data mixing strategies (e.g., CutMix) have shown the ability to greatly improve the performance of convolutional neural networks (CNNs). They mix two images as inputs for training and assign them with a mixed label with the same ratio. While they are shown effective for vision transformers (ViTs), we identify a token fluctuation phenomenon that has suppressed the potential of data mixing strategies. We empirically observe that the contributions of input tokens fluctuate as forward propagating, which might induce a different mixing ratio in the output tokens. The training target computed by the original data mixing strategy can thus be inaccurate, resulting in less effective training. To address this, we propose a token-label alignment (TL-Align) method to trace the correspondence between transformed tokens and the original tokens to maintain a label for each token. We reuse the computed attention at each layer for efficient token-label alignment, introducing only negligible additional training costs. Extensive experiments demonstrate that our method improves the performance of ViTs on image classification, semantic segmentation, objective detection, and transfer learning tasks. Code is available at: https://github.com/Euphoria16/TL-Align.
translated by 谷歌翻译
The pretrain-finetune paradigm in modern computer vision facilitates the success of self-supervised learning, which tends to achieve better transferability than supervised learning. However, with the availability of massive labeled data, a natural question emerges: how to train a better model with both self and full supervision signals? In this paper, we propose Omni-suPErvised Representation leArning with hierarchical supervisions (OPERA) as a solution. We provide a unified perspective of supervisions from labeled and unlabeled data and propose a unified framework of fully supervised and self-supervised learning. We extract a set of hierarchical proxy representations for each image and impose self and full supervisions on the corresponding proxy representations. Extensive experiments on both convolutional neural networks and vision transformers demonstrate the superiority of OPERA in image classification, segmentation, and object detection. Code is available at: https://github.com/wangck20/OPERA.
translated by 谷歌翻译